Accurate prediction of outcomes among patients in intensive care units (ICUs) is important for clinical research and monitoring care quality. Most existing prediction models do not take full advantage of the electronic health record, using only the single worst value of laboratory tests and vital signs and largely ignoring information present in free-text notes. Whether capturing more of the available data and applying machine learning and natural language processing (NLP) can improve and automate the prediction of outcomes among patients in the ICU remains unknown.